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Abstract. In this paper, we propose a modified Bregman-function-based proximal point
algorithm for solving variational inequality problems. The algorithm adopts a similar constructive
approximate criterion as the one developed by Solodov and Svaiter (Set Valued Analysis 7 (1999)
323) for solving the classical proximal subproblems. Under some suitable conditions, we can get
an approximate solution satisfying the accuracy criterion via a single Newton-type step. We obtain

´the Fejer monotonicity to solutions of VIP for paramonotone operators. Some preliminary
computational results are also reported to illustrate the method.

AMS subject classifications: 90C30, 90C33, 65K05

Key words: Bregman functions; Inexact methods; Monotone operators; Proximal point algo-
rithms; Variational inequalities

1. Introduction

A classical variational inequality problem, denoted by VIP(F, V) for simplicity, is to
find a vector x*[V, such that

kx 2 x*, F(x*)l> 0 , ;x [V , (1)

n nwhere V is a nonempty closed convex subset of R , F is a mapping from R into
nitself, and k? , ?l stands for the usual inner product in R .

It is well known that VIP(F, V) is closely related to the problem of finding a zero
nn Rof a maximal monotone operator T : R → 2

n0[ T(x) , x [R . (2)

nIf the feasible set V5R , then VIP(F, V) reduces to (2) with T 5F. On the other
hand, (1) is a special case of (2) with T(x)5F(x)1N (x) andV

hy : kx92 x, yl< 0, ;x9[Vj , if x [V
N (x)5HV 5 otherwise

is the normal cone operator.
The proximal algorithm introduced by Martinet [20] for solving problem (2)

kgenerates a sequence hx j by solving a series of proximal subproblems
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k0[ c T(x)1 x 2 x , (3)k

where hc j, [c, `) with c . 0 is a sequence of regularization parameters. Sincek

solving the subproblem (3) exactly can be quite difficult or even impossible in
practice, it is essential to use approximate solutions in devising implementable
algorithms. In [22], the inexact version of the method (3) was introduced

k11 k k11 k11e 1 x [ c T(x )1 x , (4)k

k11 ` kwhere e is the associated error term. Under the condition that o ie i,`, thek50

method was proved convergent globally.
Much recent research has focused on the ‘‘nonlinear’’ generalization of the

k11proximal point method [5, 9, 11, 13, 16–18]. That is, x is obtained by solving the
generalized proximal point subproblem

k0[ c T(x)1=h(x)2=h(x ) , (5)k

nwhere h: R → R is a Bregman function [4], which is strictly convex, differentiable
in the interior of V. When applied to VIP(F, V), the subproblems of the generalized
proximal point algorithm are essentially systems of equations, for all information
about the feasible set V is embedded in the function h. By contrast, subproblems in
the classical proximal point algorithm are themselves nonlinear variational inequali-
ty problems, which are structurally considerable more difficult to solve than systems
of equations. See [5] for detailed examples.

To make the generalized proximal algorithm more implementable, Eckstein [12]
gave an inexact version of the method (5)

k11 k k11 k11e 1=h(x )[ c T(x )1=h(x ) , (6)k

kand proved that the generated sequence hx j converges to a zero of T under the
condition

`

kO ie i,` and
k50

(7)
`

k kO ke , x l exists and is finite .
k50

Other inexact generalized proximal point algorithm are [6, 18, 26]. However, as
discussed in [12] and [23], the approach of [12] is the simplest and easiest to use in
practice. Still, the approximate criterion (7) is more restrictive than that for classical
proximal point algorithm. Recently, Solodov and Svaiter [23] proposed a new
generalized proximal point algorithm. At the kth step, they get a proximal solution

k11x [V by solving
k k k0[ c T( y )1=h( y )2=h(x ) (8)k

and
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k11 21 k kx 5=h (=h(x )2 c T( y )) (9)k

satisfying
k k11 2 k kD ( y , x )<s D ( y , x ) , (10)h h

where D (? , ?) is ‘‘D-function’’ which will be defined in the sequel and s [ (0, 1) ish

a constant. Note that the error tolerance (10) is more constructive than (7), because
k

s [ (0, 1) is a constant. However, to verify if y is an acceptable proximal solution,
we have first to solve the problem

k k
=h(x)5=h(x )2 c T( y ) ,k

k11to get a trial point x , which may be computational expensive in many cases when
=h is difficult to invert. Their method therefore, has its advantage only for the case

21that =h is easy to get.
In this paper, we propose a new Bregman function-based proximal point

algorithm for solving variational inequality problems. The approximate criterion we
adopt here is similar to that in [24] for classical proximal point algorithm. An
advantage of this accuracy criterion is that, under some suitable conditions, the

kapproximate solution y of the proximal subproblem can be obtained via only one
Newton-type step. The proximal subproblem therefore, is not computational
expensive. To ensure the convergence of the algorithm, we make a projection step to
generate the next iteration. This is what our method ‘‘hybrid’’ is named after. Note
that the projection step is not time consuming too, at least for the cases that the

nprojection to V is easy to get, such as when V is the nonnegative orthant of R , a
box or a ball. The method has both the advantages of classical proximal point
algorithms and generalized proximal point algorithms. That is, the approximate
criterion is as constructive as in [24] and the subproblems are essentially systems of
equations.

The rest of the paper is organized as follows. In Section 2, we summarize some
mathematical preliminaries about the underlying mapping F, the projection operator
on V, and Bregman functions. In Section 3, the new algorithm is described and the
global convergence is proved. In Section 4, we discuss a Newton-type method for
the generalized proximal subproblem and prove that under some suitable conditions,

kwe can get y via only one step. Some preliminary computational results are
reported in Section 5 and some concluding remarks are given in Section 6.

n ¯Throughout this paper, for a given nonempty closed convex subset S of R , S will
denote the closure, int(S) will denote the interior, and ≠S will denote the boundary
of S. Furthermore, we assume that the solution set of VIP(F, V), denoted by V*, is
nonempty.

2. Preliminaries

In this section, we give some properties of the mappings F(?) and h(?) which will be
used in the sequel.
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nLet F(?) be a mapping from R to itself. F(?) is said to be monotone, if

nkF(x)2F( y), x 2 yl> 0 , ;x, y [R .
nLet P (?) denote the projection from R onto V. That is, P (x) is the solution of theV V

problem

minix 2 yi .
y[V

The projection operator P (?) is nonexpansive, i.e.,V

niP (x)2P ( y)i< ix 2 yi , ;x, y [R . (11)V V

n ¯Let S be an open and convex subset of R and S be its closure. Given a strictly
convex function h, finite at x, y and differentiable at y, we can measure a ‘‘distance’’

¯of sorts between x and y via the ‘‘D-function’’ D (x, y): S 3 S → R:h

:D (x, y) 5 h(x)2 h( y)2 k=h( y), x 2 yl . (12)h

It follows from the strict convexity of the function h that D (x, y)> 0 andh

D (x, y)5 0 if and only if x 5 y. We have the following property of the functionh

D (x, y).h

n ¯LEMMA 2.1 ([9], Lemma 3.1). Given h: R → (2`, 1`], u [ S, and s, t [ S, then

D (u, s)5D (t, s)1D (u, t)1 k=h(t)2=h(s), u 2 tl . (13)h h h

Proof. It follows from the definition of the ‘‘D-function’’.

n ¯DEFINITION 2.2. Let S be a convex open subset of R , we say that h: S → R is a
Bregman function with zone S if the following conditions hold:

¯B1: h is continuous, and strictly convex in S.
B2: h is continuously differentiable in S.

¯B3: Given any x [ S and a [R, the right partial level set

:L(x, a) 5 hy uD (x, y)<ajh

is bounded.
k kB4: If hy j, S is a convergent sequence with limit y*, then D ( y*, y ) → 0.h

The original definition of a Bregman function also requires the left partial set

¯L9(a, y)5 hx [ S uD (x, y)<ajh

to be bounded for any y [ S and any a [R. It is known that this boundedness
condition is extraneous regardless, since it is a consequence of Definition 2.2 (e.g.,
see [3]). In addition, Solodov and Svaiter [23] proved that the convergence
consistency of h, required in the original definition of a Bregman function, is also a
consequence of Definition 2.2.
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We need the following assumptions to guarantee the generalized proximal
subproblem solutions exist and belong to the interior of V.

A1. For any x [ int(V) and c . 0, the generalized proximal subproblem

0[ c(T(?)1=h(?)2=h(x))1 (?2 x)

has a solution.
kA2. If hy j, S converges to a point on the boundary of S and x [ S, then

k klim k=h( y ), y 2 xl51` .
k→`

Assumption A2 is called boundary coerciveness. A simple sufficient condition for
A1 and A2 is the zone coerciveness of h.

DEFINITION 2.3. The Bregman function h is called zone coercive if, for any
ny [R , there exists an x [ S, such that =h(x)5 y.

It follows from boundary coerciveness of h and the definition of the ‘‘D-
function’’ that

k ¯LEMMA 2.4. For all u [ S and all sequence hx j, S converging to a point x [ ≠S,
we have

klim D (u, x )5` .h
k→`

3. The algorithm and its convergence

In this section, we first describe our generalized proximal point algorithm and then
analyze its convergence.

Algorithm: inexact generalized proximal point algorithm.

S0. Choose a Bregman function h satisfying Assumptions A1 and A2, which zone
¯is the interior of V. Choose some 0,c , c ,1`, t [ (0, 1), the error tolerance

]0 :parameter s [ (0, 1), and x [ int(V). Set k 5 0.
k¯S1. Choose the regularization parameter c [ [c, c ], find the inexact solution y [k ]

int(V) of the proximal subproblem

k k kc (F(?)1=h(?)2=h(x ))1 (?2 x )5 r (14)k

satisfying

k k kir i<six 2 y i . (15)

k11S2. Compute x via
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k11 k k kx 5 (12 t)P [x 2 c a F( y )]1 tx , (16)V k k

where

k k kkF( y ), x 2 y l
]]]]]a 5 . (17)k k 2c iF( y )ik

:Set k 5 k 1 1 and go to Step 1.

Assumptions A1 and A2 guarantee that the generalized proximal subproblem (14)
kalways has an exact solution in int(V) (r 5 0). This problem will certainly always

have inexact solution y satisfying y [ int(V), and the algorithm is thus well-defined.
kMoreover, note that the generated sequence hx j is contained in int(V), since

0P (?)[V, x [V, and t [ (0, 1).V

We now begin to analyze the convergence of the method, starting with a series of
lemmas.

LEMMA 3.1. Suppose that F is continuous and monotone and x*[V is a solution
of VIP(F, V) (1). Then

k1. The generated sequence hx j is bounded;
k2. The sequence hy j is bounded;

k k3. lim (x 2 y )5 0;k→`
k k114. lim (x 2 x )5 0.k→`

Proof. From (16), it follows that

k11 2 k k k 2ix 2 x*i 5 i(12 t)(P [x 2a c F( y )]2 x*)1 t(x 2 x*)iV k k

2 k k 2 2 k 2
5 (12 t) iP [x 2a c F( y )]2 x*i 1 t ix 2 x*iV k k

k k k
1 2t(12 t)kP [x 2a c F( y )]2 x*, x 2 x*l .V k k

2 2Since 2ka, bl< iai 1 ibi , it follows that

k k k2t(12 t)kP [x 2a c F( y )]2 x*, x 2 x*lV k k

k k 2 k 2
< t(12 t)(iP [x 2a c F( y )]2 x*i 1 ix 2 x*i ) .V k k

From the above two inequalities, we have

k11 2 2 k k 2 2 k 2ix 2 x*i < (12 t) iP [x 2a c F( y )]2 x*i 1 t ix 2 x*iV k k

k k 2 k 2
1 t(12 t)(iP [x 2a c F( y )]2 x*i 1 ix 2 x*i )V k k

k k 2 k 2
5 (12 t)iP [x 2a c F( y )]2 x*i 1 tix 2 x*i .V k k

Since the projection operator P [?] is nonexpansive and x*5P [x*], we haveV V
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k k 2iP [x 2a c F( y )]2 x*iV k k

k k 2
< ix 2 x*2a c F( y )ik k

k 2 k k 2 k 2
5 ix 2 x*i 2 2a c kF( y ), x 2 x*l1a ic F( y )ik k k k

k 2 k k k 2 k 2
< ix 2 x*i 2 2a c kF( y ), x 2 y l1a ic F( y )i ,k k k k

where the last inequality follows from the fact that
k kkF( y ), y 2 x*l> 0 .

Recall that
k k kkF( y ), x 2 y l

]]]]]a 5 ,k k 2c iF( y )ik

it follows that
k k 2 k 2 k k kiP [x 2a c F( y )]2 x*i < ix 2 x*i 2 c a kF( y ), x 2 y l .V k k k k

Thus,
k11 2 k 2 k k kix 2 x*i < ix 2 x*i 2 (12 t)c a kF( y ), x 2 y l . (18)k k

From (15) and the strict convexity of h, we have

k k k k k k k k k 2 k k kkc F( y ), x 2 y l5 kc (=h(x )2=h( y )), x 2 y l1 ix 2 y i 1 kr , x 2 y lk k

k k 2 k k k
> ix 2 y i 2 ir i ix 2 y i

k k 2
> (12s)ix 2 y i . (19)

It follows from inequalities (18) and (19) that
k k 4ix 2 y ik11 2 k 2 2]]]ix 2 x*i < ix 2 x*i 2 (12 t)(12s) , (20)2 k 2c iF( y )ik

which means
k11 2 k 2 0 2ix 2 x*i < ix 2 x*i <? ? ?< ix 2 x*i .

kThus, the sequence hx j is bounded and the first assertion is obtained.
From the monotonicity of F and (19), we have that

k k k k k k k k 2kc F(x ), x 2 y l> kc F( y ), x 2 y l> (12s)ix 2 y i .k k

Using the Cauchy-Schwartz inequality, it follows from the above inequality that

k k kic F(x )i> (12s)ix 2 y i .k

kThe second assertion then follows from the boundedness of hx j and hc j, thek

continuity of F and the above inequality.
kSince hy j is bounded and F is continuous on V, there exists a constant M, such

kthat iF( y )i,M, for all k . 0. Then, it follows from (20) that
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2 k k 4` (12 t)(12s) ix 2 y i
]]]]]]]]O ,1` .2 2c Mk50 k

The third assertion follows immediately.
kFrom the nonexpansiveness of the projection operator and the fact that x [V,

we have
k k11 k k kix 2 x i5 (12 t)iP [x 2 c a F( y )]2 x iV k k

k
< (12 t)c a iF( y )ik k

k k
< (12 t)ix 2 y i ,

where the second inequality follows from the definition of a and the Cauchy-k

Schwartz inequality. The conclusion thus follows from the third assertion. This
completes the proof. h

kLEMMA 3.2. If F is continuous and monotone on V and hx j has a cluster point
` ` `x [ int V, then F(x )5 0 and x solves the variational inequality problem (1).

kProof. It follows from (15) and the last assertion in Lemma 3.1 that r → 0. Let
k `jhx j be the corresponding subsequence converging to x . Then from Lemma 3.1 we

k `jhave y → x . From (14), we have

1k k k k k kj j j j k j]F( y )5 (=h(x )2=h( y ))1 (x 2 y 1 r ) .ckj

` `Since x [ int(V), =h is smooth at x . And since c is bounded away from zero,k

taking limit on the both sides of the above equation and using the continuity of F,
` `we conclude that F(x )5 0 and thus x solves the variational inequality problem

(1). h

To prove the convergence of the algorithm, we have to impose a condition on F,
which is, however, weaker than strong or strict monotonicity.

n nDEFINITION 3.3. A mapping F : R → R is paramonotone in a convex set V if
and only if F is monotone and

kF(x)2F( y), x 2 yl5 0 , ;x, y [V

implies F(x)5F( y).
The following lemmas are taken from [8], the reader can refer to Propositions 23

and 24 in [8] for the proof.

kLEMMA 3.4. If hx j is bounded and has no cluster points in int V, and

k k11lim(x 2 x )5 0 ,
k→`
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k¯then for each u [ int V there exists a cluster point x(u) of hx j in ≠V such that

¯ ¯kF(x(u)), u 2 x(u)l> 0 . h

LEMMA 3.5. Suppose that F is continuous and paramonotone. If the solution set
k ˜V*± 5 and hx j has no cluster points in int V, then there exists a cluster point x of

khx j in ≠V that solves VIP(F, V). h

We are now in the position to present our main result.

THEOREM 3.6. If F is continuous and paramonotone, V is closed and convex with
nonempty interior, and h is a Bregman function satisfying Assumptions A1 and A2

kwhose zone is the interior of V. Then the sequence hx j generated by the inexact
algorithm converges to a solution of VIP(F, V) whenever the solution set V* of the
problem is nonempty.

kProof. By Lemma 3.1 hx j conforming to the algorithm is bounded. So it has at least
¯ ¯one cluster point x [V. It follows from Lemma 3.2 and Lemma 3.4 that x solves

¯VIP(F, V). Then substitute x* by x in Lemma 3.1, we have

k11 2 k 2¯ ¯ix 2 x i < ix 2 x i .

k ¯The whole sequence hx j therefore, converges to x, a solution of VIP(F, V). h

4. Solving the proximal subproblem

Note that the proximal subproblem (14) is essentially a system of equations

E (x)5 0 , (21)k

with

1k k]E (x)5F(x)1=h(x)2=h(x )1 (x 2 x ) .k ck

In an alternative way, it can also be viewed as the classical proximal point algorithm
to solve the system

kF(x)1=h(x)2=h(x )5 0 .

For this problem, Solodov and Svaiter [24] gave a regularized Newton-type
algorithm. In the following, we give a similar analysis, which shows that we can get
an approximate solution satisfying (15) via a single Newton step.

n n nSuppose that F : R → R is monotone and continuously differentiable, h: R → R
2is twice continuously differentiable in int(V), with =F 1= h being Lipschitz

continuous. That is, there exist a constant L . 0 such that
2 2i(=F(x)1= h(x))2 (=F( y)1= h( y))i<Lix 2 yi , ;x, y [ int(V) .
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The fundamental method to solve the subproblem (14) is the Newton method. Next,
kwe will show that if x is not a solution of VIP(F, V), then a single Newton-type

step will make us in the situation of (15) in the kth iterate, provided we choose

k 21 / 2 k 21 / 2c [ [0.1(LiF(x )i) , (LiF(x )i) ] ,k

s [ [1 /2, 1) and
k k k:y 5 x 1 s ,

where
k k 2 k 21 k:s 52 (c (=F(x )1= h(x ))1 I) c F(x ) ,k k

kand y [V. We now prove this fact.
2By the Lipschitz continuity of the operator =F 1= h, we have

k k k k k 2 k k ki(F( y )1=h( y ))2 (F(x )1=h(x ))2 (=F(x )1= h(x ))( y 2 x )i
L k k 2]< iy 2 x i . (22)2

Since
k k k k k 2 k ky 2 x 5 s 52c F(x )2 c (=F(x )1= h(x ))s ,k k

combining the above equation with (22), we get

1 Lk k k k k k k k] ]ic (F( y )1=h( y )2=h(x ))1 y 2 x i< is i ix 2 y i .kc 2k

2Since =F(x) and = h(x) are positive semidefinite, we have

k kis i< c iF(x )i .k

Thus, it follows that
2 kc LiF(x )ikk k k k k k k]]]]ic (F( y )1=h( y )2=h(x ))1 ( y 2 x )i< iy 2 x i .k 2

Then, (15) follows immediately from the choice of s and c .k

5. Computational results

In this section, we implement the proposed generalized proximal point method to
solve some variational inequalities, and give some preliminary computational
results.

nIn the case that V5R , VIP(F, V) becomes the nonlinear complementarity1
nproblem (NCP): Find a vector x*[R , such that

x*> 0 , F(x*)> 0 , kx*, F(x*)l5 0 .

A Bregman function for this case is
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n

h(x)5O x log xj j
j51

2with the convention that 0 log 05 0. We define the diagonal matrix = h(x) as

1.0 , if x(i)5 02
= h(x)(i, i)5H1.0 /x(i) , otherwise .

As we have discussed in the last section, we use just one Newton-type step to solve
the subproblem (14). We take

]]kc 5 1.0 / iF(x )i ,k œ
t 5 0.01 and the stop criterion in the following examples is

k11 k 26ix 2 x i< 10 .

All codes were written in Matlab 5.3 and run on a PIII 600 personal computer.
The first problem is a linear complementarity problem (LCP), in which

F(x)5Mx 1 q ,

where

1 2 ? ? ? ? ? ? 2
?0 1 2 ? ? ? ??

T? ? ? ? ?M 5 ? ? ? ? ? , q 5 (21, 21, . . . , 21) .? ? ? ? ?
? ? ?3 4? ? ? 2? ? ?
0 ? ? ? ? ? ? 0 1

It is known that the Lemke’s algorithm for this problem run in exponential time
[21]. Hanrker and Pang [14] used the damped-Newton algorithm to solve this
problem up to n 5 128 and He and Yang used a projection and contraction algorithm
to solve it with n up to 10000. Table 1 quotes their results.

0For this problem we take the initial point x 5 (1, 1, . . . , 1). The computational
results are reported in Table 2.

Table 1. Results by damped-Newton and projection methods

Dimension 8 16 32 64 128

Damped-Newton method 9 20 72 208 .300
Projection method 24 25 27 29 32

Table 2. Computational results of LCP with n 5 8 to 256

Dimension 8 16 32 64 128 256

Iter. num 7 9 10 11 13 16
CPU (s) 0.06 0.11 0.21 0.28 1.92 16.81
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Table 3. Computational results of LCP with n 5 64 for different initial point

Trial 1 2 3 4 5 6 7 8 9 10

Iter. num 27 25 28 27 26 29 24 27 28 27
CPU (s) 0.31 0.22 0.33 0.32 0.27 0.33 0.27 0.32 0.33 0.27

Tables 1 and 2 show that, compared with the damped-Newton algorithm and the
projection and contraction algorithm, the proposed method is substantial computa-
tional efficiency. The iterative number of the proposed algorithm is much less than
those algorithms. The subproblem in our proposed algorithm is nonlinear equation,
which is generally difficult to solve than that in the damped-Newton algorithm
(linear equation) and the projection and contraction algorithm (projection to the
feasible set). However, since we just need to get an approximately solution and a
Newton step is enough, the subproblem is not complex in this sense.

To show that our method converges globally, we solve the above problem with
n 5 64 and the initial point generated uniformly in (0, 10). Table 3 reports the
computational results.

From Tables 2 and 3, we can see that the iterative number and the CPU time are
quite insensitive to the starting point. The above two tables show that our method is
efficient and converges globally.

In our second test problem we take

F(x)5D(x)1Mx 1 q ,

where D(x) and Mx 1 q are the nonlinear part and the linear part of F(x),
1respectively. We form the linear part Mx 1 q similarly as in [14]. The matrix

¡M 5 A A1B, where A is an n 3 n matrix whose entries are randomly generated in
the interval (21, 11) and a skew-symmetric matrix B is generated in the same way.
The vector q is generated from a uniform distribution in the interval (2500, 1500).
In D(x), the nonlinear part of F(x), the components are D (x)5 a p arctan(x ) and aj j j j

is a random variable in (0, 100). A similar type of the problem was tested in
2[19, 25]. Table 4 reports our computational results for n from 10 to 100 with the

Table 4. Computational results of NCP

n 10 20 30 40 50 60 70 80 90 100

Iter. num. 11 12 15 16 18 15 25 36 40 37
CPU (s) 0.05 0.05 0.11 0.17 0.26 0.47 0.82 1.02 0.99 1.27

1 ¡In the paper by Harker and Pang [14], the matrix M 5 A A1B 1D, where A and B are the same matrices
as here, and D is a diagonal matrix with uniformly distributed random variable d [ (0.0, 0.3).jj

2 In [19, 25], the components of nonlinear mapping D(u) are D (x)5r* arctan(x ) and r . 0 is a constant.j j
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initial point generated randomly in (0, 1). It seems that the iterations number varies
just slightly.

To give some comparison, we solve the same problem as in [19, 25] where the
constraint set S is

5
5S 5 x [R O x > 10, x > 0, i 5 1, 2, . . . , 5UH Ji i

i51

but M is a 53 5 asymmetric positive definite matrix whose entries are randomly
generated in (25, 5), the vector q is generated from a uniform distribution in the
interval (210, 10), and D (x)5 arctan(x 2 2), i 5 1, 2, . . . , 5.i i

To solve this problem, we first introduce a Lagrange multiplier to convert the
problem to an equivalent nonlinear complementarity problem. We also code the
globally convergent Newton method (GCNM) of Taji et al. [25]. We use the
quadratic-program solver quadprog.m from the MATLAB optimization toolbox to
perform the projection. We rewrite the subproblem in [25] as a linear complemen-
tarity problem (LCP) and solve it by Lemke’s complementarity pivoting method
[10], which finds a solution of LCP in a finite number of steps. The parameters used
in their algorithm are set the same as those in [25]. Tables 5 and 6 give the
numerical results for r 5 100 and r 5 200, respectively. For simplicity, in these
tables, we denote our method by GPPA.

From Tables 5 and 6, we can see though the iterative number is larger than
Newton-type method [25], the total CPU time is smaller. Especially, the computa-
tional cost at each iteration is much smaller. There are two reasons. The first one is
that, at each iteration, the Newton-type method [25] needs to make some projections
to the feasible set S, which is more difficult than to make projections to the simple

5 5 5set V (In the test problem, V5R 3R , where R denotes the nonnegative orthant1 1
5of R ). The other one is that, the Newton-type method [25] needs to solve a linear

variational inequality problem at each iteration, while the proposed algorithm needs
only to solve a system of nonlinear equations approximately.

Table 5. Numerical results for r 5 100

Starting point Algorithm Num. of iter. CPU (s)

(25, 0, 0, 0, 0) GCNM 6 0.29
GPPA 13 0.06

(10, 0, 10, 0, 10) GCNM 6 0.34
GPPA 11 0.05

(10, 0, 0, 0, 0) GCNM 7 0.33
GPPA 11 0.05

(0, 2.5, 2.5, 2.5, 2.5) GCNM 5 0.23
GPPA 10 0.05
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Table 6. Numerical results for r 5 200

Starting point Algorithm Num. of iter. CPU (s)

(25, 0, 0, 0, 0) GCNM 7 0.38
GPPA 15 0.06

(10, 0, 10, 0, 10) GCNM 6 0.29
GPPA 13 0.05

(10, 0, 0, 0, 0) GCNM 7 0.44
GPPA 14 0.05

(0, 2.5, 2.5, 2.5, 2.5) GCNM 5 0.28
GPPA 11 0.05

6. Conclusions

In this paper, we give a new Bregman function-based proximal point algorithm for
the variational inequality problem with monotone operators. We allow to solve the
subproblems approximately, with the constructive accuracy criterion (15). Under
some suitable conditions, we prove the global convergence of the algorithm. A
Newton-type method is discussed to solve the generalized proximal subproblem and
a single step is enough to ensure the approximate solution satisfies the criterion.
Furthermore, we also report some preliminary computational results to show the
efficiency of the method.

The Bregman function we used in this paper is of the form

ck 2]h (x)5 h (x)1 ixi ,k 0 2

where h (?) is a Bregman function. The idea that using the Bregman function with0

this structure is natural: the Bregman function h is used to restrict the generated0
k 2sequence hy j exists in V and c /2ixi is used to control the error tolerance [1, 2].k

Moreover, we allow to use different Bregman function per iteration, which enable us
to choose c self-adaptively such that the trial point generated by a single Newtonk

step satisfies (15).
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